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§1. Introduction. Strictly positive logics (spi-logics) are fragments of modal logic
defined over the language L +, which allows formulas constructed from propositional
variables, the constant ⊤, conjunction, and diamond modalities. Inspired by the tree-
based representation of strictly positive formulas introduced by Kikot et al. [2] and
Beklemishev [3], recent work [8] shows that certain spi-logics can be effectively captured
using tree rewriting systems. This approach offers new tools for analyzing provability,
based on a correspondence between L + formulas and inductively defined modal trees.

We extend the framework developed in [8] to a broader family of spi-logics with
basic system K+ [7], the strictly positive fragment of polymodal K. Our approach
includes extensions of K+ obtained by adding standard axioms such as monotonicity,
transitivity, and the hierarchy-sensitive interaction axiom (J):

(J) ⟨α⟩φ ∧ ⟨β⟩ψ ⊢ ⟨α⟩(φ ∧ ⟨β⟩ψ), for α > β. (1)

which governs the interplay between modalities of different strengths. One important
such extension is K4+ [2], the strictly positive fragment of K4; while the most powerful
one is the Reflection Calculus (RC, cf. [6], [5]), which corresponds to the strictly
positive fragment of polymodal GLP [4].

The rewriting calculi associated with this family of spi-logics are defined by rules
that transform modal trees through subtree replacement. These rules fall into five
kinds according to the transformation they perform: atomic, structural, replicative,
decreasing and modal. Atomic rules modify node labels by adding or removing propo-
sitional variables; the structural rule rearranges the order of children; the replicative
rule duplicates the child of a node; decreasing rules remove children and enforce tran-
sitivity; and modal rules decrease edge labels and restructure the tree to reflect the
behavior of the axiom (J).

∆ ↪→J

∆̃ S

Γ̃

α

β

∆

∆̃

SΓ̃

α

β

Figure 1. J-rule. The dash lines indicate portions of the tree that
are not affected by the rule.

§2. Main results. Our principal contribution is the rewrite normalization of the
tree rewriting calculi for the considered spi-logics, providing explicit upper bounds that
reflect the interactions among the rewriting rules. This normalization reorganizes tree



transformations into a canonical form, consisting of a structured sequence of rule appli-
cations grouped by their respective kinds. More precisely, given a rewriting sequence
Ω, it can be transformed equivalently into a normal rewriting sequence of the form:

Ω+ ⌢ Ω⋄ ⌢ Ωδ ⌢ Ωρ ⌢ Ωσ, (2)

where Ω+,Ω⋄,Ωδ,Ωρ and Ωσ are, respectively, sequences of replicative, modal, decreas-
ing, atomic and structural rules.

To achieve normalization, our approach follows two main directions: (i) analyzing
how tree metrics change under rewriting to establish an appropriate bounding frame-
work, and (ii) studying the permutation of rule applications. Permuting rules generally
involves intricate technical reasoning about tree positions and the conditions governing
rule application. When two rules are applied at disjoint positions, their applications
commute straightforwardly. However, overlapping applications may require introducing
additional rules to resolve conflicts. In particular, when the rule for subtree duplication
is involved, permuting it with a sequence of other rule applications typically leads to an
exponential increase in the total number of rules. For tree rewriting calculi of spi-logics
without axiom (J), normalization exhibits exponential bounds:

|Ω+| ≤ |Ω|, |Ω⋄| ≤ 2|Ωδ|+|Ω|, |Ωδ ⌢ Ωρ| ≤ 2|Ω|, |Ωσ| ≤ n(S)− 1, (3)

where n(S) denotes the number of nodes in the target tree.
In contrast, for logics including (J), normalization cannot be achieved by uniquely

analyzing the combinatorial scenarios of rule applications, as was possible in the absence
of J. Specifically, the J-rule introduces complex interactions with replicative rules
that perform subtree duplication, causing the normalization process to exhibit double-
exponential complexity. To address the subtle challenge, we introduce the notion of
J-flags, which track subtrees affected by J throughout the rewriting process. These flags
allow us to show that sequences of replicative rules permute with the application J-
rules by induction on the number of J-flags appearing in the resulting tree. Notably, we
demonstrate that this is a well-founded inductive argument since, after intermediate
rearrangements on the application of the rules, the number of J-flags introduced is
strictly smaller than in the original derivation.

When considering spi-logics including axiom (J), the upper bound for the replicative
and modal rules of their corresponding tree rewriting calculi satisfy:

|Ω+| ≤ (w(T) + 1)(h(T)+1)2·|Ω|
, |Ω⋄| ≤ 2|Ωδ|+2|Ω|( |Ω+|+w(T)+1)h(T) , (4)

where w(T) and h(T) denote the width and height of the initial tree T.
In conclusion, we hope the presented results contribute to the theoretical foundations

of spi-logics. The tree rewriting view not only captures the proof-theoretic essence
of spi-logics but also offers an effective method for understanding modal interaction
through normalization. Beyond their theoretical value, our findings support a more
efficient approach to proof search by significantly reducing redundancy: thanks to the
normalization theorems, it suffices to consider only normalized rewriting sequences.
This restriction narrows the search space and improves computational efficiency [1].

[1] Goubault-Larrecq, Jean and Mackie, Ian, Proof theory and automated
deduction, Springer Science & Business Media, 2001.

[2] Kikot, Stanislav and Kurucz, Agi and Tanaka, Yoshihito and Wolter,
Frank and Zakharyaschev, Michael, Kripke completeness of strictly positive modal
logics over meet-semilattices with operators, The Journal of Symbolic Logic, vol. 84
(2019), no. 2, pp. 533–588.

[3] Lev D. Beklemishev, Positive provability logic for uniform reflection principles,
Annals of Pure and Applied Logic, vol. 165 (2014), no. 1, pp. 82–105.

2



[4] Japaridze, G., The polymodal provability logic, Intensional logics and logical
structure of theories: material from the Fourth Soviet-Finnish Symposium on
Logic Metsniereba, Telavi, 1988.

[5] Dashkov, Evgenij Vladimirovich, On the positive fragment of the polymodal
provability logic GLP, Mathematical Notes, vol. 91 (2012), pp. 318–333.

[6] Lev D. Beklemishev, Calibrating provability logic, Advances in modal logic
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