▶ PHILIPP PROVENZANO, Non-wellfounded languages and proofs. UGent, Krijgslaan 281, 9000 Gent, Belgium.

E-mail: Philipp.Provenzano@UGent.be.

We introduce the general concept of a non-wellfounded proof-system $G(\mathcal{L})$, based on a non-wellfounded language \mathcal{L} , and analyze its properties through the lens of reverse mathematics, drawing connections to questions of determinacy. More concretely, we show that all of consistency, semantic cut-admissibility and soundness, for an appropriate semantic, for $G(\mathcal{L})$ are equivalent to $\omega \operatorname{Det}(\mathcal{L})$. By the latter, we denote a principle stating that for countably many games based on the language \mathcal{L} , as explained in more detail below, there exists a set simultaneously containing a winning strategy for one of the two players for each of the countably many games. In most cases of interest, it is equivalent to the determinacy of the individual games, $\operatorname{Det}(\mathcal{L})$. Particular examples of this framework have been previously presented at CiE 2025 [1] and the ASL Logic Colloquium 2025, where we introduce systems $G(\mathcal{L}_{\omega}^{\mathcal{N}P<\omega})$ and $G(\mathcal{L}^{<\omega-\operatorname{trees}})$ of respective strengths $\Pi_1^1 - \operatorname{CA}_0$ and projective determinacy PD.

Every element φ of a non-wellfounded language \mathcal{L} has an associated ω -branching tree $T(\varphi)$, together with a labelling of its nodes by propositional connectives $c(\varphi): T(\varphi) \to \{\vee, \wedge\}$, and a subset $\mathcal{W}(\varphi) \subseteq [T(\varphi)]$ of the infinite paths $[T(\varphi)]$ of $T(\varphi)$. Additionally, \mathcal{L} carries a negation operation such that $T(\neg \varphi) = T(\varphi)$, but the labels $c(\neg \varphi)$ and winning paths $\mathcal{W}(\neg \varphi)$ are inverted. Defining sequents as finite lists p_0, \ldots, p_n of nodes $p_i \in T(\varphi_i)$ for some formulas $\varphi_i \in \mathcal{L}$, a notion of pre-proofs in the style of ω -logic readily follows from the propositional connectives $c(\varphi_i)$. Among those, the correct proofs are selected through a trace condition, asserting that for every branch B, there exists some $\varphi \in \mathcal{L}$ and a path $P \in \mathcal{W}(\varphi)$ such that P is fully unfolded along B. The connection to determinacy arises through an evaluation game for formulas φ . This is a two-player game, say between Player P and Opponent O, who collaboratively play a path through $T(\varphi)$. For \vee -nodes it is P's turn and for \wedge -nodes it is O's turn to choose the next child node. If one player is out of moves they lose, otherwise, if an infinite path $B \in T(\varphi)$ has been played, P wins iff $B \in \mathcal{W}(\varphi)$, otherwise O wins.

In the previously mentioned examples, $\mathcal{W}(\varphi)$ is determined by some additional structure that is continuously embedded along the paths of $T(\varphi)$. For $\mathcal{L}_{\omega}^{\searrow P < \omega}$, this additional data is a natural number label, called priority, which is non-increasing along branches. A path $P \in [T(\varphi)]$ is then winning, $P \in \mathcal{W}(\varphi)$, if the eventually constant label is even. For $\mathcal{L}^{1-\text{trees}}$, we continuously embed another tree along the branches of $T(\varphi)$. This means that for every $s \in T(\varphi)$, we have an associated finite tree $T_1(s)$ such that if $s \sqsubseteq t$, then $T_1(s) \sqsubseteq T_1(t)$ is an initial segment. A path $P \in T(\varphi)$ is then winning, $P \in \mathcal{W}(\varphi)$, if the limiting tree $T_1(P) := \bigcup_{s \in P} T_1(s)$ is ill-founded. The language $\mathcal{L}^{<\omega-\text{trees}}$ is obtained by a higher-order generalization of this idea.

Finally, if time permits, we comment on syntactic cut-elimination for the systems $G(\mathcal{L})$. We show for some general classes of non-wellfounded languages, including the previous examples, that correctness of syntactic cut-elimination is once again equivalent to $\omega \operatorname{Det}(\mathcal{L})$. This basic idea follows an approach by Baelde et. al. [2], reducing syntactic cut-elimination to soundness of the system.

This project has been funded by the FWO (Research Foundation - Flanders) under file number 11K7425N.

- [1] PROVENZANO, PHILIPP, On the reverse mathematics of cut-elimination and determinacy, Lecture Notes in Computer Science (Lisbon, Portugal), (Beckmann, Arnold and Oitavem, Isabel), Springer-Verlag, 2025, to be published, accepted for Computability in Europe 2025
- [2] BAELDE, DAVID AND DOUMANE, AMINA AND SAURIN, ALEXIS, Infinitary Proof Theory: the Multiplicative Additive Case, Leibniz International Proceedings in

 $\label{local_equation} \textbf{Informatics (LIPIcs)} \ (25 th EACSL \ Annual \ Conference \ on \ Computer \ Science \ Logic), \\ (Talbot, \ Jean-Marc \ and \ Regnier, \ Laurent), \ vol. \ 62, \ 2016, \ pp. \ 42:1–42:17.$